Sensitivity analysis test functions#
Test functions for parameter sensitivity analysis.
They were taken from
- Ishigami and Homma (1990)
An importance qualification technique in uncertainty analysis for computer models, Proceedings of the isuma ‘90, First International Symposium on Uncertainty Modelling and Analysis, University of Maryland, Dec. 03 - Dec 05 1990, 398-403
- Oakley and O’Hagan (2004)
Probabilistic sensitivity analysis of complex models: a Bayesian approach J. R. Statist. Soc. B 66, Part 3, 751-769.
- Morris (1991)
Factorial sampling plans for preliminary computational experiments, Technometrics 33, 161-174.
- Saltelli et al. (2008)
Global Sensitivity Analysis. The Primer, John Wiley & Sons, pp. 292
- Saltelli et al. (2010)
Variance based sensitivity analysis of model output, Design and estimator for the total sensitivity index, Comp. Phys. Comm. 181, 259-270.
- Sobol’ (1990)
Sensitivity estimates for nonlinear mathematical models, Matematicheskoe Modelirovanie 2, 112-118 (in Russian), translated in English in Sobol’ (1993).
- Sobol’ (1993)
Sensitivity analysis for non-linear mathematical models, Mathematical Modelling and Computational Experiment 1, 407-414, English translation of Russian original paper Sobol’ (1990).
Current functions are:
Function |
Description |
---|---|
B |
B of Saltelli et al. (2010) |
G / g |
G-function attributed to Sobol’ (1990, 1993), given by Saltelli et al. (2008, 2010) |
Gstar |
G* of Saltelli et al. (2010) |
ishigami_homma |
Ishigami and Homma (1990), given by Saltelli et al. (2008, page 179) |
K / bratley |
K of Saltelli et al. (2010) |
fmorris / morris |
After Morris (1991) |
oakley_ohagan |
Oakley and O’Hagan (2004), parameters given in Saltelli et al. (2008) or on http://www.jeremy-oakley.staff.shef.ac.uk/psa_example.txt |
linear |
Linear test function \(Y = a*X + b\) |
product |
Product test function \(Y = X[0] * X[1]\) |
ratio |
Ration test function \(Y = X[0] / X[1]\) |
ishigami_homma_easy |
Simplified Ishigami and Homma function \(Y = sin(X[0]) + X[1]\) |
This module was written by Matthias Cuntz & Juliane Mai while at Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany, and continued by Matthias Cuntz while at Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Nancy, France.
- copyright:
Copyright 2015-2022 Matthias Cuntz, Juliane Mai, see AUTHORS.rst for details.
- license:
MIT License, see LICENSE for details.
Functions:
|
B function |
|
G-function |
|
G-function |
|
G* example |
|
K example |
|
K example |
|
Morris-function |
|
Morris-function |
Oakley and O'Hagan (2004) |
|
|
Ishigami and Homma (1990) |
|
Linear test function |
|
Product test function |
|
Ratio test function |
Simplified Ishigami and Homma function |
- History
Written Mar 2015 by Matthias Cuntz (mc (at) macu (dot) de) & Juliane Mai
Added functions to test PAWN method properly: linear, product, ratio, and ishigami_homma_easy, Dec 2017, Juliane Mai
Provide morris function under the name fmorris and the K function under the name bratley, Nov 2019, Matthias Cuntz
Changed to Sphinx docstring and numpydoc, Dec 2019, Matthias Cuntz
Distinguish iterable and array_like parameter types, Jan 2020, Matthias Cuntz
More consistent docstrings, Jan 2022, Matthias Cuntz
- B(X)[source]#
B function
Saltelli et al. (2010) Comp. Phys. Comm. 181, p. 259-270
- Parameters:
X (array_like) – (nX,) or (nX,npoints) array of floats
- Returns:
B – float or (npoints,) floats of B function values at X
- Return type:
float or ndarray
- G(X, a)[source]#
G-function
Sobol’ (1990) Matematicheskoe Modelirovanie 2, 112-118 (in Russian)
Sobol’ (1993) Mathematical Modelling and Computational Experiment 1, 407-414 (English translation)
- Parameters:
X (array_like) – (nX,) or (nX,npoints) array of floats
a (array_like) – (nX,) array of floats
- Returns:
g – float or (npoints,) floats of G function values at X with parameters a
- Return type:
float or ndarray
- Gstar(X, alpha, delta, a)[source]#
G* example
Saltelli et al. (2010) Comp. Phys. Comm., 181, p. 259-270
- Parameters:
X (array_like) – (nX,) or (nX,npoints) array of floats
alpha (array_like) – (nX,) array of floats
delta (array_like) – (nX,) array of floats
a (array_like) – (nX,) array of floats
- Returns:
G* – float or (npoints,) floats of G* function values at X with parameters alpha, delta and a
- Return type:
float or ndarray
- K(X)[source]#
K example
Saltelli et al. (2010) Comp. Phys. Comm., 181, p. 259-270
- Parameters:
X (array_like) – (nX,) or (nX,npoints) array of floats
- Returns:
K – float or (npoints,) floats of K function values at X
- Return type:
float or ndarray
- bratley(*args)[source]#
K example
Saltelli et al. (2010) Comp. Phys. Comm., 181, p. 259-270
- Parameters:
X (array_like) – (nX,) or (nX,npoints) array of floats
- Returns:
bratley – float or (npoints,) floats of K function values at X
- Return type:
float or ndarray
- fmorris(X, beta0, beta1, beta2, beta3, beta4)[source]#
Morris-function
Morris (1991) Technometrics 33, 161-174
- Parameters:
X (array_like) – (20,) or (20,npoints) array of floats
beta0 (float) – float
beta1 (array_like) – (20,) array of floats
beta2 (array_like) – (20,20) array of floats
beta3 (array_like) – (20,20,20) array of floats
beta4 (array_like) – (20,20,20,20) array of floats
- Returns:
fmorris – float or (npoints,) floats of Morris function values at X with parameters beta0-beta4
- Return type:
float or ndarray
- g(X, a)[source]#
G-function
Sobol’ (1990) Matematicheskoe Modelirovanie 2, 112-118 (in Russian)
Sobol’ (1993) Mathematical Modelling and Computational Experiment 1, 407-414 (English translation)
- Parameters:
X (array_like) – (nX,) or (nX,npoints) array of floats
a (array_like) – (nX,) array of floats
- Returns:
G – float or (npoints,) floats of G function values at X with parameters a
- Return type:
float or ndarray
- ishigami_homma(X, a, b)[source]#
Ishigami and Homma (1990)
given by Saltelli et al. (2008, page 179)
- Parameters:
X (array_like) – (3,) or (3,npoints) array of floats
a (array_like) – float or (npoints,) array of floats
b (array_like) – float or (npoints,) array of floats
- Returns:
ishigami_homma – float or (npoints,) floats of Ishigami and Homma function values at X with parameters a and b
- Return type:
float or ndarray
- ishigami_homma_easy(X)[source]#
Simplified Ishigami and Homma function
\[Y = sin(X[0]) + X[1]\]with X[0], X[1] ~ Uniform[-Pi, Pi]
- Parameters:
X (array_like) – (2,) or (2,npoints) array of floats
- Returns:
ishigami_homma_easy – float or (npoints,) floats of simplified Ishigami and Homma function values at X
- Return type:
float or ndarray
- linear(X, a, b)[source]#
Linear test function
\[Y = a*X + b\]- Parameters:
X (array_like) – (1,) or (1,npoints) array of floats
a (array_like) – float or (npoints,) array of floats
b (array_like) – float or (npoints,) array of floats
- Returns:
linear – float or (npoints,) floats of linear function values at X with parameters a and b
- Return type:
float or ndarray
- morris(*args)[source]#
Morris-function
Morris (1991) Technometrics 33, 161-174
- Parameters:
X (array_like) – (20,) or (20, npoints) array of floats
beta0 (float) – float
beta1 (array_like) – (20,) array of floats
beta2 (array_like) – (20, 20) array of floats
beta3 (array_like) – (20, 20, 20) array of floats
beta4 (array_like) – (20, 20, 20, 20) array of floats
- Returns:
morris – float or (npoints,) floats of Morris function values at X with parameters beta0-beta4
- Return type:
float or ndarray
- oakley_ohagan(X)[source]#
Oakley and O’Hagan (2004)
Statist. Soc. B 66, Part 3, 751-769
- Parameters:
X (array_like) – (15,) or (15, npoints) array of floats
- Returns:
oakley_ohagan – float or (npoints,) floats of Oakley and O’Hagan function values at X
- Return type:
float or ndarray
- product(X)[source]#
Product test function
\[Y = X[0] * X[1]\]- Parameters:
X (array_like) – (2,) or (2,npoints) array of floats
- Returns:
product – float or (npoints,) floats of product function values at X
- Return type:
float or ndarray
- ratio(X)[source]#
Ratio test function
\[Y = X[0] / X[1]\]Simple nonlinear model proposed by Liu et al. (2006):
Liu, H., Sudjianto, A., Chen, W., 2006. Relative entropy based method for probabilistic sensitivity analysis in engineering design. J. Mech. Des. 128, 326-336.
Used by Pianosi & Wagener, Environmental Modelling & Software (2015)
Pianosi, F. & Wagener T., 2015 A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environmental Modelling & Software 67, 1-11.
- Parameters:
X (array_like) – (2,) or (2,npoints) array of floats
- Returns:
ratio – float or (npoints,) floats of ratio function values at X
- Return type:
float or ndarray