General functions#
Functions used with Efficient/Sequential Elementary Effects
This module was written by Matthias Cuntz while at Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany, and continued while at Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Nancy, France.
- copyright:
Copyright 2015- Matthias Cuntz, see AUTHORS.rst for details.
- license:
MIT License, see LICENSE for details.
Functions:
|
General cost function for optimising func(x, p) vs y with sum of square deviations. |
|
Curvature of a function f |
- History
Written Mar 2015 by Matthias Cuntz (mc (at) macu (dot) de)
Changed to Sphinx docstring and numpydoc, Dec 2019, Matthias Cuntz
Split logistic and curvature into separate files, May 2020, Matthias Cuntz
More consistent docstrings, Jan 2022, Matthias Cuntz
Transferred curvature and cost_square from pyjams to pyeee, Mar 2024, Matthias Cuntz
- cost_square(p, func, x, y)[source]#
General cost function for optimising func(x, p) vs y with sum of square deviations.
- curvature(x, dfunc, d2func, *args, **kwargs)[source]#
Curvature of a function f
\[f''/(1+f'^2)^{3/2}\]- Parameters:
x (array_like) – Independent variable to evalute curvature
dfunc (callable) – Function giving first derivative of function f: f’, to be called dfunc(x, *args, **kwargs)
d2func (callable) – Function giving second derivative of function f: f’’, to be called d2func(x, *args, **kwargs)
args (iterable) – Arguments passed to dfunc and d2func
kwargs (dict) – Keyword arguments passed to dfunc and d2func
- Returns:
Curvature of function f at x
- Return type:
float or ndarray
Examples
from pyjams.functions import dlogistic_offset, d2logistic_offset curvature(1., dlogistic_offset, d2logistic_offset, [1., 2., 2., 1.])